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When a conductive medium flows along a channel in an inhomogeneous external mag- 
netic field, the associated electrical current and velocity are likewise inhomogeneous. 

The electric field in such channels has been computed on several occasions [I and 2] 
under the assumption of a nondeformable velocity profile (valid at a small magneto- 
hydrodynamic interaction parameter). The resulting distributions of the electromagnetic 

parameters can be used to find the fields of the hydrodynamic quantities in the first 

approximation . This approach was used by Shurcliff [3] to determine the asymptotic 

velocity profile established in the stream following its passage through the inhomogene- 
ous magnetic field zone in a channel with nonconductive walls. The flow in a channel 

with electrodes in the case of an incompressible fluid is computed in [4] ; analogous 

computations for an ideal perfect gas are carried out in [5 to 71. In the aforementioned 
papers the flow unperturbed by the magnetic field is assumed to be homogeneous and 
anisotropy of the medium is neglected. The present paper concerns the effect of aniso- 

tropic conductivity and initial flow inhomogeneity on the deformation of the velocity 

profile in an inhomogeneous magnetic field. 

1, 

I I 

The flow of an incompressible nonviscous (‘“) fluid in a flat channel (Fig. 1) 

x0 <co, 0 < go <h = const in the presence of an external magnetic field B = (0, 

0, B *, b (X ) ) for small magnetic Reynolds numbers is described by the system 

*) The extent (in the X0 direction) of the inhomogeneous magnetic field usually does 
not exceed the height h of the channel in order of magnitude. Hence, the effects of vis- 
cosity which are manitested over much larger segments of the channel can be neglected 
in the first approximation. 
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Here U, U and J’, , Jwy are the dimensionless components of the velocity and 
density vectors of the electric field, respectively, p and fp are the dimensionless pres- 
sure and electrical potential, 0 is the electxicaf conductivity, p is the density, h’.> 

is the characteristic value of the magnetic induction, k’ is the average velocity over 
the channel cross section, C is the velocity of light in a vacuum, S is the magneto- 
hydrodynamic interaction parameter, e and R are the electron charge and mass, ‘i 

is the average time between collisions of electrons with other particles. and /3 is the 

Hall parameter. The quantities @ and C7 will henceforth be assumed constant. The 
velocity, electric current density, pressure, electrical potential, and coordinates are 

given in ratio to the quantities V, c -W’B*, pV*, c-~WB* and h, respectively. 
System (1.1) must be supplemented by boundary conditions for the hydrodynamic and 

electrical quantities and by asymptotic conditions for Ix I -+=. With a small magneto- 
hydrodynamic interaction parameter the solution of system (1.1) can be sought in series 
form, 

U = U-“(Y) + 5sk74Jc y), 

k=l 

u = 5skq; (z, y), 
k=l 

(4.2) 

P = P- + ypkPk (2, !I), 
k=l 

Here U-= 0, Us ( y) , and p- = cons1 are the velocity and pressure in the channel 
for S=O. Substituting (1,2) into (1.1) for each k= 0, 1, 2, . . . , we obtain two Iinear 
systems in (ph-.* jr&, jrra and z&+1, Zfk+lr &+l respectively. The zeroth approxi- 
mation for the electrical parameters and the first approximation for the hydr~ynamic 

System (1.3) with U-E 1 has been investigated by many authors [l and 21. System 
(1.4) for Umzl and fl = 0 in Equations (1.3) is considered in [3 and 43 + 

Let us average Equations (1.4) over the channel cross section. Assuming that the chan- 
nel walls are impermeable to the fluid, we obtain 

2;<u-al) = - 2 <PI> + b ci,>* <w = 0 

22 
u-u = Pl(G q- Plh q-w,> (w = { u+4) (1.5) 

0 
The latter condition in (1.5) defines the averaging operation. We further assume that 

bi-CQ)=O. and that the magnetic field and boundary conditions for the electrical 
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current are homogeneous at infinity on the right. Then 

u1 (- IX) = 0, p1 (- cc) = 0, j, (- =) = 0; j, (m) = const, 

if b (oc) # 0 and j, (oc) = 0, if h (CC) = 0. Th e current and potential distribution 
for x = OD can be determined from the solution of system (1. 3) by setting b(x) : const , 
jo= const. Thus, if b( “) : 1 , then j. ( “) : 0 provided the walls are nonconduc- 

tive for x-‘O”; jxo (CO) = -pi!,0 (00)~ j?,o (m) = - (1 - K) / (1 i- P2), when 
the walls are continuous electrodes ; j_d (CO) = (), j!io (m) = _ (1 _ K) in rhe 

case of ideally segmented electrodes. Here K = cp (CC, 0) - cp (x, 1) = con& 
is the parameter of the load connecting the electrodes. 

The pressure drop II (5) = spV2 P (x) in the channel is (by virtue of (1.5) ) 

given by Formula f 

P = 2 (u-q) - s b (j,,,) ds = U.@ 
--00 

=~(~-~I)----~(QJ)~~~(~) - fbCil,o:ds-f [b(j?,~>--b(m)i!,o(00)ld5 
--cn 0 

(P = P1(- m) - (PI (59 !I)) = - (PI (x7 ?I))) 

For large X (for which the current distribution is homogeneous), Equation (1.6) yields 

(2.7) 

P=P,,=2K* -"w9&,~ w- f b(i,,)d~-~[b(i!,,)--b(oo)i, Wlds 
-cQ 0 

(P = (u-zq+), Ulf == Ul (=J, v)) 

If j&oc) = 0, then -kc 

Pm=2K’- s b (iv,> dx (1.8) 
-02 

For U-% 1 we have K ” = 0 , and the pressure drop can be determined without the 

solution of system (1.4). If, on the other hand, U- E/Z 1, then in order to compute PO3 
it is necessary not only to solve (1.4), but also to find Ult( y) on the basis of Equations 

(1.4) . 
Shurcliff [3] showed that for U-5 1 the asymptotic velocity profile tLl+ ( y) can be 

computed without solving the whole of system (1. 4) . We shall show that this conclusion 
is also valid for u- + 1. Constructing the difference between the first two equations 

of system (1.4) differentiated with respect to y and X , respectively, and making use 
of the continuity equations for the velocity and electrical current density, we obtain 

(,i.9) 

Integrating this equation with respect to x over the limits ( -Co , + Co ) and taking 
account of the fact that u 1 + ul+ (y), z+ + 0 as .zc-‘~ , we obtain the following 

ordinary second-order differential equation : 
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(1.10) 

If b ( X ) = const everywhere in the channel, then by (I., 10) there is no velocity per- 

turbation. In regions where k (X ) = const the electromagnetic force is potential, so 

that the vorticity is conserved along the current lines 6 As X * co the electromagnetic 

force is completeIy balanced by the pressure gradient, Deformation of the velocity 
profile is due to the existence of segments with an inhomogeneous magnetic field l 

The solution @ of Equation (1.10) and the velocity correlation K * are given (“) 

by Formulas 1 

cp = cu-5 (!I) + u-5 (Y>, 
1 1 K* = (u&-) zzz - 

25 (1) s T (Y> II, (Y) dv 
0 

0 0 0 

2, Let us investigate the deformation of the velocity profile in a channel whose 

walls are ideally segmented electrodes for X > 0 and insulators for X < 0. The loads 
connecting the electrodes are chosen such that the condition & = - (1 -K) = const 

is fulfilled at the walls for X > 0 1 The condition K = 1 corresponds to a channel , 
whose walls are noncunductive along its entire Iength. Let the magnetic field be of 
the form b (5) = 0 (5 < Oj, b (z] = 1 (z > 0) (24 

Further, let the velocity profile be homogeneous ( 24” zz 1) and let the Hall parameter 
be different from zero , We shall now determine the velocity profile I**) 2.4 I+ ( &#) l 

From (1.10). (1.11) we obtain 
Ii 

ul+ = C + ’ vh, 
s 

c=- &Y)dl 

0 0 0 

(y = i, (0, !I)> (2.2) 

System (1.3) under the above conditions is solved 

in 181 . The expression for the current jxd in 
the discontinuity cross section of the magnetic 

field is of the form 

Fig. 2 (23) 

The dependences bll+( 1/) computed from Formulas (2.2) , (2.3) for a channel with 

nonconductive walls (I= 1) for various /3 appear in Fig. 2. The broken curve 

*) By(1.31) U1+ is bounded and continuous only if U-(&j is a smooth function which 
does not vanish for 0 s &’ 2 1 II 
**> The asymptotic velocity profiIe is realized in practice for z 3 1. 



corresponding to the flow of an isotropically conducrive fluid is taken from P], The 
abso$ute value of the velocity perturbations diminishes as 8 increases. The point where 
C&l /dy= 0 moves closer to the lower wall . In a channel whose waIIs act as elec- 

trodes the velocity perturbations are, by (2.2). (2.3), smaller than those shown in Fig. 2 
by the factor l/ii”. , The velocity It,’ at the walls (Fig. 2) is equal to 0.127 , 0. W03, 
0, 0419 for P = 1, 5, 10, respectively , 

3 , Let us consider the flow of an isotropically conductive fluid in a channel with 

nonconductive walls when the unperrurbed velociry profile is described by an arbitrary 
even smooth function U * f y ) t System (1.3) can be rewritten as 

i$di?y = -uw b ror y = 0, y = 1 

Here UWW is the velocity at the wall l For U w- = 0 system (3.1) is solved in [9] . 
Let U,- # 0 . On conversion to the auxiliary variable @(X, g)$ system (3.1) 

be comes (lU-- d2b 
@=-bq--$-2$-q@ (90 = CD - bUJ/) 

(3.22 

&D/&J= 0 for y ==o,y=i 
Its solution is given by Formulas 

Eo 

The general solution of (3,4) can be readily represented in quadratnres. 

?!-(I& 

Fig. 3 Fig. 4 

If the function b (X) is discontinuous (e. g. f&l) ) or piecewise-smooth, then Equa- 
tion (3.4) must be solved in each segment where db/&.X is continuous and the solutibns 
matched on the basis of the continuity conditions for the quantities 
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(:c.,,; 

in passing through the discontinuity points (‘) . 
The Joule dissipation & in the channel and the pressure drop are 

m 

P,=2K”_ - 2 
1 m 

2ryp s b (4r,ZO, --PJ dx (3.7) 
VZl --a7 

The quantities Q. and pa coincide in the case of an unperturbed velocity profile 

(u,~l,~y=o). 
Let us consider flow in magnetic field (2. I). From (3.3) to (3.7) we find that 

0, = a, exp (2 P,Z) for x<o 

4-w co 

ixo(O,d= jlro $dx=y(y)=--2 c 2a, r, COS 2r,y (3.9) 
&I v=l 

itl (--- 0,y) = u-/z, iv (i-0, y) = - u-l 2 

Let us choose the following two families of ~~rt~b~d velocitiy profiles characterized 
by the same flow rate u = uw- f 6 (1- u*-> y (I - y) (3.11) 

~=~W-+$(l-74W-)si*ny (3.12) 

For family (3.11) we find that 

r(Y)=- 3(1 - %lP-)? (Y) - uw-z (Y) (3.13) 

Q&_ Rs + 3Ec,- (I- uw-> Rs + 4.5 f 1. - UW_)’ R? (3.14) 

(3.15) 

1 

7 127 
’ Ra=i--L ry* = 25.79436 2953;215 , 

. VZ_X 2995.286 

*) tines of discontinuity of the magnetic field replace narrow zones in which it varies 
rapid1 * 
tity ;Ty 

Conditions (3.5) follow from the continue of the current jxo and the quan- 
C&/a@ in passing through the discontin~ty cross sections [9] . 
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For the family of profiles (3.12) we obtain (3.16) 

7 (Y) = - + (1 - u,) cos fly - u,-z (y) 
2 

fL&+uJ, p2=/.43=..* =o) 

+ %I-(‘; %-) U -2 

f -yRs (3.17) 

u - 
-+ RJ (3.18) 

The function $( z/) and the q:antity c(1) in Formulas (3.15) and (3.18) can be 
determined from the corresponding profiles of (3.11) and (3.12) in accordance with 

(1.11). Formulas (3.14) and (3.17) are valid for all 0 <?A,,. - < co, while (3.15) and 
(3.18). as noted above, are valid only for U,- such that U- > 0 over the entire interval 

(0, 1). 
Let us consider the profiles of (3.12) (Fig, 3) in more detail. They are convex in the 

direction of the X-axis if U,’ < 1 (i. e. if the velocity at the wall is smaller than the 

average velocity over the cross section), and concave if U, > 1 . For U, > l-r/( TT- 2) : 

= 2.75 there is a segment Y1 < y < 1 - Yr (Yrn = *n-a [2uU, / rt (u, - l)]), on which 

U’(Y) co. When U,,-~2.75, U- > 0 over the entire interval (0, 1) . Let us inves- 

tigate the function y( g) = Jjxo ( y) (Fig, 4). It is odd with respect to g = i_. If 

O<u,<aW(lP- 4) = 1.68, then y(E/) < 0 for 0 < 2 < g. When U, > 1.68 , 

y(y) CO for 0 < PC g, and y(y)> 0 for ync y< i. Here g=_& is a root of 
Equation y(y) = 0. It can be shown that gn < M for the same Uw > 2.75 . If 
0<u,<na/~4?t_na)=0.712, then the curves y(y) have an inflection point : if 

I&’ > 0.712 , they are convex upward. The character of the dependences y(y) =&JO, y) 
and U- (p) = 2Jy( - 0, g ) make it possible to represent the electrical currents in the 
channel schematically. If U,,- < 1.68 , then there is or& center of vortex currents at 

the point (0, 1) . For I, 68 c U,,- c 2.75 there are two new centers of vortex currents 

at the points (0, y2) and (0, 1 - Y+J ) 
with the same direction of rotation as 
before. On the other hand, when UWS > 

>2.75, the two indicated centel_ ‘tie 

y?r” 5y-X F?y?r” 

Fig, 5. a, b. c Fig. 6 
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closer to the walls, and closed current loops with opposite directions of rotation arise 

about the point (0, 4) , Fig, 5 shows the current directions along the line X = 0 , We 
note that the discontinuity of the magnetic field disrupts the smoothness of the current 
lines at X = 0 , 

Fig, 6 shows the asymptotic velocity profiles. The velocity perturbation diminishes 
with increasing U w- , When the electrical current lines are of the character shown in 

Fig. 5a , the maximum pressure along the line x = 0 (by virtue of the force (j Y: B),,) 
occurs at the point (0, $) . The velocity at the walls therefore increases while that 
near the axis diminishes. If the electrical current lines are as shown in Fig. 5b, the 
points of increased pressure (and hence of maximum slowing down of the fluid) shift 

away from the axis and closer to the walls, For sufficiently large 24 w. in the range 

1.68 cl&- < 2.75 the velocity U I+( $4) near the channel axis turns out to be positive. 
The velocity correlation appears in Fig. 7 in the form of the functi on K” ( 21,) . 

It is evident that 2 SK’” is equal (in the first approximation) to the difference between 
the momentum ( ~2 > of the fluid in the cross sections x + co and x ---)-01, As we 

know, given the same flow rate, a less (more) filled velocity profile is, as a rule, asso- 
ciated with a larger (smaller) momentum. It is evident from the curves of Fig, 6 that 

for U w- < 1 the velocity profile becomes 

more filled as a result of interaction between 

the fluid and magnetic field, so that p < 0 . 
Fig, 7 also shows the dependence of the 
pressure loss p, on the parameter U,. 

Fig, 7 Fig. 8 

If the correlation were not considered, P, would appear to be a monotonously de- 
creasing function. With allowance for the correlation, on the other hand, the function 

p,( U w- ) is fundamentally different in character : it has a maximum . 
Finally, Fig. 8 shows the function 6? o( U wa ) . The Joule dissipation for a specified 

flow rate is determined chiefly by the velocity in the flow core. In accordance with 
Fig_ 6, the absolute value of the velocity at the channel axis, first diminishes and then 
increases with increasing U,- . The function 6& ( U,,-) therefore has a minimum , 
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